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1 trapping in dipolar magnetic fields

1.1 Dipole field

The magnetic dipole field has a field strength of

Bdipole =
µ0

4πr2
M
r
(−2sinλêr + cosλêλ) (1)

and

Bdipole =
µ0

4πr2
M
r

(
1+3sin2 λ

)1/2
, (2)

where λ is the magnetic latitude and M is the magnetic moment. As an example,
M = 8.05 ·1022Am2 is the magnetic moment of the Earth’ dipolar field.
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We need an equation for a magnetic field line, i.e. an expression for B(λ) along a
line of force. If ds = (dr,λdλ) is an arc element, then a line of force satisfies

ds×B !
= 0,

from which follows that

dr
Br

=
rdλ
Bλ

.

Using Eq. (1)

dr
r

=−2sinλdλ
cosλ

=
2d(cosλ)

cosλ
,

and after integration

r(λ) = r(0)cos2 λ. (3)

r is usually expressed as multiple L = r(0)/Rp of the planet’s equatorial radius Rp.
Substituting Eq. (3) into Eq. (2) and introducing the equatorial field strength at the
planet’s surface

Bp =
µ0Mp

4πR3
p

gives the standard form for a planetary magnetic dipolar field

B(λ,L) =
Bp

L3

(
1+3sin2 λ

)1/2

cos6 λ
(4)

cos2 λp = L−1, (5)

where λp is the latitude at which a field line of a given L dissects the planet’s surface.
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As apparent from the figure above, a planetary dipolar field is in fact a magnetic
mirror and is thus able to trap plasma particles.
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1.2 Bouncing in a dipole field

Let’ introduce the so-called pitch angle between the particle’s velocity vector and the
local magnetic field

α= tan−1 v⊥
v‖

.

Because of v = v⊥ sinα,

µ=
T⊥
B

=
mv2

2B
sin2α=

T
B

sin2α,

and Ṫ = 0, the pitch angle depends only on the magnetic field strength B. Hence,

sin2α1

B1
=

sin2α2

B2
,

or

sin2α1

sin2α2
=

B1

B2
.

At the mirror points is T‖ = 0 and therefore α= 90◦, and thus

sinα=

(
B

Bmp

)1/2

. (6)

This means that the pitch angle at a given location depends on the ratio between the
local field strength B and the field strength at the mirror point Bmp.

It is useful to define the pitch angle αeq at the equatorial plane

sin2αeq =
Beq

Bmp
=

cos6 λmp

(1+3sin2 λmp)1/2
,

where λmp is the latitude of the mirror point. αeq depends only on λmp, but not on L.
Small equatorial pitch angles imply large values of v‖.

1.3 Loss cone

Particles may for instance collide with neutrals of the planet’s atmosphere and get lost.
Let’s assume that this happens at zero altitude.
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Particle gets 
 lost at λmp

λmp

B(λ)
Bmp

In this case we can use the equations for the equatorial pitch angle introduced before,
i.e.

sin2αeq =
Beq

Bmp
=

cos6 λmp

(1+3sin2 λmp)1/2
.

Particles with pitch angles α< αeq will be lost to the atmosphere. The same applies to
particles with α> 180◦−αeq.

The geometric interpretation of this result is this of a loss cone:

v∥

v⊥

dΩ
αeq

Expressing λmp by its corresponding L value gives

sin2αeq =
(
4L6−3L5)−1/2

. (7)

Note that the loss cone does not depend on the particle charge, mass, and energy, but
only on the filed line curvature.
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Remains the question under what circumstances trapping can actually happen. We
already found that

T = µBmp =
1
2

mv2
‖+µB.

Particles will get trapped if their kinetic energy

T < µBmp.

Now,

µBm =
T⊥
B

Bmp =
m
2

v2
⊥,eq

Bmp

Beq
>

m
2

{
v2
⊥,eq + v2

‖,eq

}
,

and

v2
⊥,eq

(
Bmp

Beq
−1
)
≥ v2
‖,eq.

After substituting for the mirror ratio R = Bmp/Beq we get

v2
⊥,eq (R−1)≥ v2

‖,eq,

or ∣∣∣∣v⊥,eq

v‖,eq

∣∣∣∣= ∣∣tanαeq
∣∣≥ 1√

R−1
.

1.4 Bounce period

The duration τb for a single bounce is

τb = 4

λmp∫
0

ds
v‖

= 4

λmp∫
0

ds
dλ

dλ
v‖

.

5



L E C T U R E 9 PHYS5150

Using that guiding center velocity along the field line is

v‖ = v
(

1− B
Beq

sin2αeq

)1/2

and

dr
dλ

=
d
dλ

(
req cos2 λ

)
= req cosλ

(
1+3sin2 λ

)1/2
,

we obtain

τb = 4
req

v

λmp∫
0

cosλ(1+3sin2 λ)1/2

[
1− sin2αeq

(1+3sin2 λ)1/2

cos6 λ

]−1/2

dλ.

The integral cannot be solved analytical, but is reasonably well approximated by

τb ≈
L ·Rp

(T/m)1/2 (3.7−1.6sinαeq) .

The bouncing period exhibits only a weak dependence on the equatorial pitch angle.
This is resulting from the fact that small αeq correspond to large values of v‖, and vice
versa.

1.5 Drifts

Finally let us consider the drifts in an dipolar field. In a cylindrically symmetric field
configuration is

−∇B =

(
B
R2

c

)
R̂c.

This allows to merge vR and vG into a single expression. The total magnetic drift is
then

vB = vR +vG =

(
v2
‖+

1
2

v2
⊥

)
B×∇B
ωcB2 .

The angular drift per bounce cycle is then

∆Ψ = 4

λmp∫
0

vB

r cosλ
ds
v‖

,

which allows us to find the drift time scale

〈 τd 〉 ≈
πqBpR2

p

3LT
(0.35+0.15sinαeq)

−1

as well as the average drift velocity of the bouncing particles

〈 vd 〉 ≈
6L2T

qBpRp
(0.35+0.15sinαeq) .
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Note that 〈 vd 〉 does not depend on the particle mass. This means that ions and
electrons drift with the same 〈 vd 〉 in opposite directions. Also, because 〈 vd 〉 scales
as L2, the drift velocity at more distant L shells is actually faster.
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